67 research outputs found

    Orcutt’s Vision, 50 years on

    Get PDF
    Fifty years have passed since the seminal contribution of Guy Orcutt [Orcutt,1957],which gave birth to the field of Microsimulation. We survey, from a methodological perspective, the literature that followed, highlighting its relevance,its pros and cons vis-`a-vis other methodologies and pointing out the main open issues.

    IFSIM Handbook

    Get PDF
    This handbook explains the simulation model IFSIM. IFSIM is an agent based simulation model written in JAVA. The model is constructed for analyzing demographic and economic issues. The aim of the model is to include the main consumption and production patterns over the life-cycle and thus being able to test demo-economic interactions.agent-based modelling; simulation model; JAVA; demogrphy; economy; demo-economic interactions

    Effects of Sharing Parental Leave on Pensioners' Poverty and Gender Inequality in Old Age. A Simulation in IFSIM

    Get PDF
    The poverty outcome in old age is affected by labour market reforms. Using our in house agent based simulation model IFSIM we show that sharing equally the parental leave can increase or reduce poverty among the elderly depending on the macro and behavioural responses that the Reform off-sets. In general, it can be good for (elderly) women provided that (i) it spurs them to work more, particularly in older ages (ii) it does not slow down economic growth (hence pension income growth) below a level when working more does not pay. Our simulations show that the effect of this Reform on poverty and gender inequality is time dependent: different outcomes might be expected for different generations depending on whether the balancing mechanism (in the state income pension) is present or not. In general, the Reform might not lead to positive outcomes if it occurs in conjunction with the striking of the automatic balancing, unless a behavioural response to work more among older workers (in response to the balancing) is also unleashed.Poverty; Pensioners; Parental leave; Simulation model; IFSIM; Gender inequality

    CARDIOVASCULAR STIFFNESS IN AORTIC VALVE STENOSIS: DO WOMEN CARRY A HEAVIER WEIGHT?

    Get PDF

    Online proton therapy monitoring: Clinical test of a Silicon-photodetector-based in-beam PET

    Get PDF
    Particle therapy exploits the energy deposition pattern of hadron beams. The narrow Bragg Peak at the end of range is a major advantage but range uncertainties can cause severe damage and require online verification to maximise the effectiveness in clinics. In-beam Positron Emission Tomography (PET) is a non-invasive, promising in-vivo technique, which consists in the measurement of the β+ activity induced by beam-tissue interactions during treatment, and presents the highest correlation of the measured activity distribution with the deposited dose, since it is not much influenced by biological washout. Here we report the first clinical results obtained with a state-of-the-art in-beam PET scanner, with on-the-fly reconstruction of the activity distribution during irradiation. An automated time-resolved quantitative analysis was tested on a lacrimal gland carcinoma case, monitored during two consecutive treatment sessions. The 3D activity map was reconstructed every 10 s, with an average delay between beam delivery and image availability of about 6 s. The correlation coefficient of 3D activity maps for the two sessions (above 0.9 after 120 s) and the range agreement (within 1 mm) prove the suitability of in-beam PET for online range verification during treatment, a crucial step towards adaptive strategies in particle therapy

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan
    • …
    corecore